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NOMENCLATURE

Coupling coefficient
Amplitude

External damping coefficient
Strain

Young's modulus

Fourier expansion coefficient of
initial imperfection

Transverse force per unit length
Initial displacement
Dimensionless initial displacement
Initial velocity

Dimensionless initial velocity
Moment of inertia of the tube
Wave number

Defined in Eqgs. 26

Length of the tube

Moment

Magnification factor

Added mass per unit length
Mass per unit length of the tube
Period (271/w)

External loading per unit length
Dimensionless time coordinate
Dimensionless force
Generalized dimensionless force
u/v

o

q/(my +myg)

Time

Axial force

Dimensionless fluid transport
velocity

Steady component of u
Critical fluid transport velocity
Fluid transport velocity

Phase velocity

v

i, V3

<l
)

Wo

Yo

Wave velocity for U = 0
Phase velocities given in Eqs. 16
Phase -propagating velocity

Dimensionless transverse displace-
ment of the tube

Dimensionless initial deflec-
tion = yo/4

Work

Axial coordinate

Transverse displacement of the tube
Initial deflection

Distance from each fiber to neutral
axis

Greelileliexs

Dimensionless damping coefficient
[mg/(my +mg)]?

Dimensionless axial force
Kronecker Delta

2Pu (2Puyg, if u is not a constant)
Arbitrary phase constant

Damping coefficient

Coefficient of internal damping
Wave number defined by Eqgs. 22
Excitation parameter

Natural frequency for neglecting
Coriolis force and u = 0

x/b

Parameters defined by Egs. 60
Stress

Dimensionless time

Orthonormal eigenfunction for
neglecting the Coriolis force term

Dimensionless frequency

Natural frequency

Natural frequency for neglecting the
Coriolis force






VIBRATIONS AND STABILITY
OF A TUBE CONVEYING FLUID

by

S. S. Chen and G. S. Rosenberg

ABSTRACT

This report analyzes the free vibration, forced vi-
bration, and parametric response of a simply supported tube
conveying fluid; the effects of initial curvature and Coriolis
force are included and evaluated. The equationof motion is
formulated to incorporate initial curvature, damping, axial
force, andunsteadyflow. Galerkin's methodisused to deter-
mine the free vibration by solving an algebraic character-
istic equation; the forced vibration is reduced to a system
of coupled ordinary differential equations. Excitation due to
pulsating flow is also examined by means of Galerkin's
method, which, in this case, yields a set of coupled Mathieu-
Hill-type equations. The possibility of onset of a parametric
behavior is demonstrated, and explicit formulas are obtained
for the boundaries of the first two instability regions. Due
to the presence of a Coriolis force, the system is character-
ized by a phase difference and mode coupling. The signifi-
cance of the Coriolis forceis discussed. The effect of initial
curvature is analyzed, and wave propagation and vibrational
problems in the media without flexural rigidity are also in-
vestigated in detail.

I. INTRODUCTION

Various components of reactors, such as fuel pins, control rods,
and heat-exchanger tubes, are long, slender members having some poten-
tial for vibration. Structural vibrations often cause damage to such com-
ponents through wear and fatigue.

One source of energy that can induce these vibrations is the high-
velocity fluid flowing through a reactor core. Thus the vibration of tubes
exposed to a parallel flow is of practical importance in reactor applications.

The transverse vibration of a tube conveying fluid has received con-
siderable attention since the early 1950's. Ashley and Haviland® were
among the first investigators. Housner? showed the existence of a critical
flow velocity and revised several of the conclusions given previously.!




The relationship between natural frequencies and fluid transport
velocity was analyzed by Niordson,® who derived the equation of motion
from shell theory for a long-wave approximation. Long* calculated the
frequency by a power-series method and performed the experimental in-
vestigation. Later, Benjamin® analyzed the stability of a chain of articu-
lated pipes; the stability of a cantilever pipe was studied theoretically and
experimentally by Gregory and Paidoussis.® More recently, an exact so-
lution for the natural frequencies and axial distribution of phase was com-
puted by Naguleswaran and Williams.” And most recently, Thurman and
Mote® presented a nonlinear oscillation study to assess the applicable range
of linear theory.

The present study is within the framework of linear theory. How-
ever, an analytical solution is difficult to obtain because the governing dif-
ferential equation of motion is not self-adjoint, due to the existence of the
Coriolis force, which creates a mixed derivative d?y/dxdt in the equation
(see Eq. 5). Accordingly, the first objective is to investigate the signifi-
cance and effects of the Coriolis force on free vibration, forced motion,
and parametric response.

The influence of unsteady flow has not been analyzed; moreover,
the tubes treated by the referenced investigators were assumed to be ini-
tially straight. However, the fluid transport velocity is not necessarily
steady, and the tubes may have some initial curvature. Therefore, the

second objective is to study the effects of pulsating flow and initial
curvature.

The third objective is to study the overall dynamic behavior and
its physical origins and effects, such that one may have a better picture
of the system characteristics.

First, the equation of motion is formulated to include the effects of
viscous damping, axial force, initial curvature, and unsteady flow. As a
special case, the system without flexural rigidity is first studied in detail.
Then, free vibration and forced vibration are analyzed, using Galerkin's
method and the mode- shape functions obtained for zero Coriolis force.
The resulting algebraic characteristic equation is easily solved and gives
accurate results; forced vibration is reduced to a system of coupled dif-
ferential equations. The parametric response is also examined by
Galerkin's method, which, in this case, yields a system of Mathieu-Hill
equations. The boundary equations of instability are obtained for the first
two regions. Finally, the significance of the Coriolis force is discussed in
terms of energy and transient response. The effects of initial curvature
are investigated by neglecting the Coriolis force.




II. STATEMENT OF THE PROBLEMS

A. Governing Equation

The system under consideration is a tube conveying fluid whose ve-
locity is U (see Fig. 1). The tube is of uniform cross section and has a
mass per unit length m¢. We

H shall assume that the tube has

initial deflection yy(x) and initial
axial tension T, and that the
alx.t) material obeys a stress-strain
relationship of the Kelvin type;
4 i.e.,
e _\‘ — x
-3 Lyt - 0 = Ee + A&, (1)
Y where E is Young's modulus
| and A is the internal damping
FLUID VELOCITY U(t) coefficient. It is known? that if

the wavelength is large in com-
Fig. 1. Simply Supported Tube Conveying parison with the diameter of the
Fluid. ANL Neg. No. 113-36317. tube, the Bernoulli- Euler beam
theory can be applied to study
the vibration of the tube; under such a condition, the tube satisfies the as-
sumption of plane sections remaining plane. From the classical bending
theory, we have

bl ‘
I :

and (2)

s Dy

e = —z—a—z.
X 7

The equation of motion may be written

M
et Y

where F is the resultant lateral force exerted on the tube and is given by

Szy Bzy 2 52y %Yo
F = + ) N el MLt
(my + myg) 2 myg . + mgU 3 P

o o ?y
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The physical interpretation of each term in Eq. 4 is as follows:

2
(my + my) oy is the inertia force of tube and fluid;

ot?

2 1 o7y is the Coriolis force of moving fluid;
LAt

<ﬂ + ° );°> is the centrifugal force of moving fluid;

c§ is the external damping force;

<i A M) is the transverse component of the axial force;
ox*  d3x
and
q is the external force applied on the tube.
On substituting Eqs.

1, 2, and 4 into Eq. 3, we obtain the equation of motion:

8 oy %y o oy 82
+ Al —— + me or meU
8x4 dxdt d3x* oxat

B. Initial and Boundary Conditions

The initial conditions of the system are specified as
y = g(x) at.ti= 03

and

%’= hi(z) S eat =N



For the simply supported tube discussed in this study, the proper boundary
conditions are:

2
atx = 0: y = 0, 532':0,
Ox
and ( (7)
2
atx = L: y = 0, ag=0
aX J

C. Dimensionless Parameters

For analytical convenience, the following diminsionless quantities
are introduced:

€ = x/[u
w = y/l’/,
wo = yo/ﬂ.
g0 = g/[n
ho = hf[(m; + mf)/EI]l/Z.
TR A DO W
E(mt S mf) ’gz .

: my 1/2

8 m; + mg i
q (8)
22
8. 7= = 172
[EI(m; + my)]

_al
Q = ik
="y ey

1/2
EEE
u -(E> U,
and

L e

oy m + mg Ve

K1
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On substituting from Eqs. 8 into Eqs. 5-7, we obtain the equation
with corresponding initial and boundary conditions:

& cz,asw+(u"‘-r‘)aw+2,€’>-.1aa +t§a a:’:
' dgtar 3¢ O T
3
O —i{a2=T) ‘Zo
o

The initial conditions are:
w = g atT = 0;
and

ow
== = hg at 7 = 0.
The boundary conditions are reduced to

~

w:a—z‘:=0 atg=0;
ot
and q
2
w=i-;’=o atg = 1.
o¢ )

of motion

(10)

(11)

Except in the parametric response and initial curvature studies, the
fluid transport velocity u is taken as constant; and except for the initial
curvature and forced-vibration studies, the tube is assumed to be perfectly
straight. Equations 5-7 or 9-11 are the complete mathematical statements
of the system. Also, dependent on the particular problem of concern, those
terms that are anticipated to be insignificant will not be included in the

analysis.

III. EXACT SOLUTION FOR THE SYSTEM WITH ZERO RIGIDITY

A. Unbounded System

If the flexural rigidity is neglected, Eq. 5 reduces to an equation of

the second order; further assuming no damping, we obtain

2 2 2
(B2U% - 7) LZ' + 2p%U ga;%;_ . a—Z = Rl t)s
ox ot

(12)
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where
%
e dori
me i mt
. ( T >l/2
vV =(—— 2
my + mg L (13)
and
ot q
m,; + mf'

7

Note that ¥ is the phase velocity of a wave when U is equal to zero. When
B = 1, Eq. 12 is the equation of motion for a moving string, bandsaw, thread-
line, or transmission chain and thus can be used to shed some light on the
dynamic behavior of such moving systems in transverse vibration. For this
reason, it is of practical interest and value to study this special case.

From the discriminant of Eq. 12, it may be seen that if

_;, (14)
VBE(1-p?)

the equation is of the hyperbolic type; thus it is possible to seek either a
progressive-wave solution or a "standing-wave" solution. There are two
different wave velocities. The general solution of Eq. 12 for R = 0 is

U <

y = G(x- v;t) + H(x+V,t), (15)
where

% = [#- p2Ud(1-p3)]Y2 + pPU,

(16)
[ o B e 48

<
~n
"

and G and H are arbitrary functions. G corresponds to a plane wave

which is always propagating downstream (in the same direction as U); and

H corresponds to a plane wave which may travel upstream or downstream,
depending on the transport velocity U. In the subcritical case (¥ > BU),

both waves propagate in different directions and with different velocities.

In the supercritical case (Vv < BU), both waves propagate in the same direc-
tion, but with different velocities. And in the critical case (¥ = BU), there

is only one propagating wave whose velocity is 2¥V; the other is a standing
wave. In all cases, ¥; is always faster than ¥,; this reflects a tendency for
the transport velocity U to accelerate the wave G, but to retard the wave H.
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The disturbance in these systems is propagated in a different man-
ner from that in a stationary string. Here, the initial value problem of
the Cauchy type is considered. The system whose motion is governed by
Eq. 12 is subjected to an initial disturbance specified by Eqs. 6; we Sl
interested in the response. The system is nondispersive, and its solution
can be obtained by D'Alembert's method. The result is given as follows

(see Appendix A):

For v ;( BU,

1 = = — =
y(x,t) = =———=|wig(xtvat) + vog(x - vit)

v, t+ v,
x+V,t t x+v,(t-7)
+f h(s) ds +f de R(s,T) ds]|. ()
x-vit 0 x-v,(t-T)
For v = BU,
1 x- 2Vt
yixt) = glx) + == f nid) a6
2¥ =

T x
+f de R(s,7) ds|. (17b)
0 x-2v(t-T)

To illustrate the effect of transport velocity on wave propagation,
two examples are given.

Initial Disturbance (R = 0)

The initial data are taken as
g = exp(-x%)

and (18)
h = 0.

Figure 2 shows the propagation of an initial disturbance, using these
values; the effect of U on the propagation is easily seen. At U = 0, the
waves propagate at the same speed. But for U ;! 0, the waves have dif-
ferent magnitudes of phase velocity and wave form: The wave with larger
phase velocity has smaller amplitude. In the supercritical case (Fig. 2c),
both waves propagate downstream and one has negative magnitude.
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(c) v=10. u=1Is

Fig. 2. Propagationof Initial Disturbanceinan Unbounded System (8 = 1.0). ANL Neg. No. 113-3636.

Impressed Wave of Force (g =0, h = 0)

Consider the case in which a train of sinusoidal waves of force per
unit length acting on the system is given by

R(x,t) = sin [k(x- vt)]. , (19)

The wave represented by this equation travels in the x-direction with wave
number k and circular frequency kv. The general solution to this problem
is obtained by substituting Eq. 19 into Eqs. 17. Three cases must be
distinguished.

Case I: v f/ T / vs.

4 1 Vit vy
K2(v,+7;) ((v2t+Vv)(¥1-V)

y(x.t) sin [k(x-vt)]

1 - -
- —— sin [k(x+7V;t)] - = sin [k(x - %;t)] (20a)
v, t v L s i
Case II: v = V.
gy o R e )] 4 e
st = —==—=cos|[k(x-"v —
! k(% +v) (7, + V)

- {sin [k(x- vt)] - sin [k(x +7,t)]} (20Db)

15
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Case III: v = -V,.
1
y(x,t) = -?(th_-v) cos [k(x-vt)] + m
- {sin [k(x - vt)] - sin [k(x- v;t)]} (20c¢)

In Case I, there are three progressing waves, traveling at v;, Va,
and v, respectively. But in Cases II and III, an additional resonant wave
progresses with velocity v, the amplitude increasing proportionally with
the time t. This wave is called the "resonance" in this unbounded system.
In the stationary string, there is only one resonant velocity of the im-
pressed wave, but there are two resonance velocities inthe moving string.

B. Finite System

To study free vibration, we set R equal to zero in Eq. 12. This
equation is satisfied by solutions of the form

Aol = expli(hx+wt)] + A, exp[i(—>\zx+2)t)], (21)

provided that

o= S B?U + /% - pAU%(1 - ﬁz)].

# - peee |
and (22)
Lz ita 52 P -ﬁZU - V% - B2UR(1 -ﬁz)]
v -gul

From knowledge of the boundary conditions,
y(x,t) = 0 St =0}
and (23)
FEE= 0 abx =
th.e va%ues of XI and ;\z corresponding to the natural frequencies of system
vibration, and the values taken by A, and 7\2, may be determined. The fre-

quency equation is obtained as

sin (X, -%;) = 0,
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and the frequencies are given by

= - n(;z . E)ZUZ)
TV g

i L b T (24)

The corresponding mode shapes are given by

Yn = sin% cos [l_<n(x+7pt+§n)]. (25)
where
2=2 A
VP = vl b )
BT
n J) /1 = Bz;z(l 5 BZ) .
T = U/,

and §n is an arbitrary constant.

The natural frequencies depend on the transport velocity, U; their
relationships are given in Fig. 3. Here, w* is defined by

; (27)

NONDIMENS IONAL NATURAL FREQUENCIES (w*)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
RATIO OF FLOW VELOCITY TO WAVE VELOCITY (U/¥)

Fig. 3. Nondimensional Natural Frequencies vs Nondimensional
Transport Velocity. ANL Neg. No. 113-3632.
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where 5,,_ is the natural frequency for zero transport velocity. The rz?tio. is
independent of n, because the media are nondispersive. The distinguishing
feature of the system is that the phase is not constant along the axis for
each mode, but propagates with a velocity V.

The phase-propagating velocity is a function of transport veloci.ty.
as shown in Fig. 4. For U = 0, ¥, is infinite and the system vibrates 1n‘
the same phase. But when U ;! 0, the system does not possess the classical
normal modes, because various parts of the system do not pass through
their equilibrium configuration at the same instant of time.

YI¥)

RATIO OF PHASE PROPAGATION VELOCITY TO WAVE VELOCITY (

0 0.2 0.4 0.6 0.8 1.0 1.2
RATIO OF FLOW VELOCITY TO WAVE VELOCITY (u/¥)

Fig. 4. Nondimensional Phase-propagation Velocity vs Nondimensional
Transport Velocity. ANL Neg. No. 113-3638.

Figure 5 shows the history of the first and second modes from which
the phase is seen to propagate upstream. With increasing transport veloc-
ity, the phase difference along the tube becomes more pronounced, and the
tube vibration assumes a snaking motion. This phenomenon is due to the

effect of the Coriolis force, which is intrinsic to a moving system in trans-
verse vibration.
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u/vV=075

FRACTIONS INDICATE TIME PERIOD

Fig. 5. Variation of Amplitudes of Fundamental Mode and Second
Mode during a Period. ANL Neg. No. 113-3633.

IV. FREE VIBRAJIION

Now we return to the problem with flexural rigidity. By setting
Q=a =6 =0, in Eq. 9, we obtain the equation of motion for free vibra-
tion (no damping); i.e.,

d*w

de*

O%w Fw  iw

gé-i—"'zﬁuagT_J-a?: (015 (28)

(el

with its associated boundary conditions given by Eqgs. 11. The difficulty in
this boundary-value problem arises from the mixed derivative term; i.e.,
the equation is not self-adjoint. Niordson® and Naguleswaran and Williams’
have formulated the exact solution, but the characteristic equation is tran-
scendental and requires an iterative technique for solution. By using
Galerkin's method, we will develop a procedure that transforms the prob-
lem to a more tractable form.

For the following analysis, a solution of the form

w(E,T) = g a,(T)8,(€) (29)
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is sought, where the q, are unknown time-dependent functions and the ¢n(€)
are space-dependent functions forming a complete set. The ¢,(£) are chosen
as mode- shape functions of the free vibrations without considering the
Coriolis force; more precisely, they are the eigenfunctions of the system of
Eqgs. 28 and 11 (neglecting the mixed derivative term),

4 2 2
a—‘f+(uz-1“ a—f+a—¢;= 0
ot of L oF
and
d((05m) == git(0, 7) =S () R U T =0 s

It can be shown that this system is self-adjoint. Such a system has a com-
plete set of real orthogonal eigenfunctions. The eigenfunctions and natural
frequencies can be obtained by conventional methods. The results are sum-
marized as follows:

Orthonormal eigenfunctions = ¢, = V2 sin (nTré); (31a)
e
Natural frequencies = Q, = el st — ; (31b)
uh
and
Critical fluid transport velocity = Bl = i (31c)

where u, is the critical flow velocity when the tube buckles or the frequency
becomes zero.

Having an orthonormal set of functions, the Galerkin orthogonality
condition is used to obtain the function 9,- On substituting Eq. 29 into Eq. 28,
multiplying through by ®n» and integrating over 0 = £ =< 1, we find

dp + Q%q, + ez anjd; = 0, (32)
d
where
€ = 2Bu

and

e 1 6(1)3- :
=) ¢na_€ de. (33)



Note that Eq. 32 is coupled through the coefficient anj which represents
the effect of the Coriolis force term. From Eq. 33, it follows that

anj + ajy = 95(1)5(1) + 9,(0)8;(0). (34)

Since ¢, and ¢j satisfy the boundary conditions, the right-hand side of
Eq. 34 is equal to zero. Accordingly, anj is skew-symmetric; i.e.,

<l (35)

This property can also be shown by carrying out the integration of Eq. 33.
Integrating Eq. 33 gives

a =0, n = j,

. jl:l - (-1)n-J ok - (-1)n+j], s

n-j nei

nj

(36)

anj is obviously skew-symmetric.

The system including the Coriolis-force term is characterized by
Eq. 32, which consists of an infinite number of differential equations. How-
ever, typically, only a finite number of equations are selected from case to
case, according to the desired accuracy. To find the natural frequencies,
let

qn = On exp(iwT). (37)

Substitution of Eq. 37 into Eq. 32 leads to the algebraic equations

05 e, =l 02s By (38)

2 2 . -
(R -w?)a, +iew Zanjaj =

i

A necessary condition for the existence of a nontrivial solution is

(Q:1 - a)"‘)énj + iewanj I =00 (39)

The natural frequencies Wy, Wy W3, ..., are found by solving this character-
istic equation. The displacement of the nth mode is

wp = Z a(n)q‘).(ﬁ) exp(iwnT), (40)
j i} i)

where a(n) is the solution of Eqs. 38 corresponding to the natural frequency

Wn. The mode shape may be written in real form as

wWn = Vn(€) cos [waT+9,(E) + 8.1 (41)

211
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where
5

2 2y V2
| [Re Sl a(®) ] }
v {[R J_Zaj <z>j(&)] +[1 oV, (€) _

(n) (42)
y ImJZaJ_ tbj r

Y = tan

rReg oo,
j 7

and 6, is an arbitrary phase constant. The phase variation along the tube
is contained in ¥, which is much more complicated and cannot be described
by a phase-propagating velocity such as that in the media without flexural

rigidity.

The natural frequency of the fundamental mode has been computed
taking two-mode, three-mode, and four-mode approximations (as listed in
Table I) for comparison. This method is very convenient and provides suf-
ficiently accurate results, especially when u is small compared with its
critical value. A two-mode approximation will give sufficient accuracy for
the first mode.

TABLE I. Fundamental Natural Frequency, u),/lll, Computed from
Two-mode, Three-mode, and Four-mode Approximation

P 0.2 06 1.0

Modes: 2 3 4 2 g 4 2 3 4
u
0.0 1.0 1.0 110 1.0 150 1.0 1.0 1.0 1.0
0.2 0.99789 0.99789 0.99789 0.99727 0.99727 0.99725 0.99603 0.99603 0.99597
0.5 0.98677 0.98677 0.98675 0.98296 0.98295 0.98282 0.97554 0.97543 0.97509
1.0 0.94614 0.94614 0.94608 0.93195 0.93176 0.93131 0.90598 0.90475 0.90376
15 0.87483 0.87482 0.87470 0.84649 0.84581 0.84499 0.79888 0.79520 0.79378
2.0 0.76525 0.76523 0.76505 0.72325 0.72200 0.72089 0.65896 0.65333 0.65170
215 0.55837 0.59835 0.59813 0.54954 0.54828 0.54701 0.48145 0.47674 0.47495
5.0 0.29176 0.29176 0.29160 0.25902 0.25876 0.25784 0.21739 0.21657 0.21517
s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 6 presents the variationof fundamental natural frequency as
a functionof the fluid transport velocity (u) when the axial force I' is taken
as zero. It is apparent that the flow does have a tendency to reduce the
natural frequency; this is attributed to the centrifugal force and the Coriolis
force. The centrifugal force plays the same role as that of the axial com-
pression, which is known to reduce the natural frequencies, and it is much
more important than the Coriolis force in reducing the frequencies. How-
ever, the latter producesa phase difference along the tube inaddition to its
small effect on natural frequencies.

It is observed in Fig. 6 that the critical fluid transport velocity
(ucritical =7) is independent of B; alternatively, the Coriolis force does



not affect the instability. If one is interested in the stability analysis, the
Coriolis-force termmay be dropped. The physical reasoning is discussed
in Section VII.

TAL MODE (w)

OF

| | | |
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
NONDIMENSIONAL FLOW TRANSPORT VELOCITY (u)

Fig. 6. Fundamental Natural Frequency vs Nondimensional Fluid
Transport Velocity. ANL Neg. No. 113-3639.

The dynamic behavior is essentially the same as that discussed in
Section III.B. The only difference is that the tube with rigidity is a disper-
sive medium. The component frequencies of any bending wave will propa-
gate with different velocities, and dispersion will occur.

V. FORCED VIBRATION

For forced vibration, a solution of the form of Eq. 29 is assumed,
and after substitution into Eq. 9 and utilization of simple transforms, we

arrive at the ordinary differential equations

dp *+ 2ndn + €X2g;45 + Opdn = A (43)
J
where
G L(ufa +6),
1 az (44)
e f Q- (- T)=—2|¢nde,
o of

23
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and € and anj have been defined in Eqs. 33. The initial conditions for these
equations are

1
qn(0) = f oty dE

0

and (45)
d9g_(0) 1
n
= :f hoty dE.
T
0

The problem has been reduced to a system of coupled ordinary differential
equations whose coupling coefficients are skew- symmetric. When € = 0,

the equations are decoupled from each other; in practice, € is a small
parameter

First, consider the steady-state response problem and let the har-
monically varying generalized force be designated by

Q, = a, sin (wT). (46)

The steady- state solutions of Eqs. 43 are assumed to be
dp = ap sin (wT) + b, cos (wT). (47)

Substituting of Eqs. 46 and 47 into Eq. 43, and setting the coefficients of
sin (WT) and cos (wT) of the resulting equation equal to zero, we obtain

a

(Q;- (,L)E) ap - Zgn(l)bn - €wZanjbj = Qan
J

and (48)

(92

( n-wz)bn+ 2§nwan+€m2a i (0

=2 11
JJJ

Employing matrix notation, we write Eqgs. 48 as

il

s
b = a

g

25k -
and (49)

Ob +Ba ="0,

where 0 and D are matrices whose elements are
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|

nj = (Q;-U.)z) (SnJ

and (50)

Dnj = (chénj + €anj) w,

oo X —
and a, b, and a are column matrices whose components are apn, by, and ap,

respectively. Thus, the steady-state problem is reduced to that of solving a

system of algebraic equations. The values for a and b are easily obtained
from Eqs. 49:

a = (Q+DQ'D)?

and (51)

For the transient response problem, if a large number of modes are
included, the solution will be quite complicated due to the presence of the
coupling terms. Instead of solving the equations directly, we use a pertur-
bation method borrowed from nonlinear theory to analyze the transient
problem.

For sufficiently small value of €, we may develop the unknown func-
tion q, of Eqs. 43 in power series with respect to €:

= qS'xO) o €qg) = €Zq$12) e (52)
Substituting the expansion into Eqs. 43 and 45 and collecting the coefficients

of the like powers of € yields the following sequence of uncoupled differen-
tial equations, which can be solved in order:

€% gl +22 60 + 2290 = q_; ol(0) = q,(0). &(0) = q,(0.  (53a)
et () + 20,40 + ala}) - Z 233 a()0) = 0. q(o) = 0. (53v)
e ) + 22 g(2) + 02q() - z . q a®(0) = 0, d®(0) = 0. (53¢c)

The zero equations are those of the forced motions without Coriolis force;
the corrections qnl are the forced motions excited by the Coriolis force

associated with q(o), and so on. By this technique, the equations are un-
coupled and easily solved. The solutions to Eqs. 53a take three possible
forms, depending on the size of the damping coefficient.

25
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Case I

62 < af
4,(0) 4 £nan(0)
qgo) = q£10) exp(-i:nT) cos <m T> et : -nC;q
n n

1 : 2
- exp(-£,7) sin <«/Q;- Qf,{r) i _Q—.\/_Zn—_E Qn(7)* exp(-£,7) sin («/Q;— Cn7'>.

Q

(54a)

Case II
2 _ 02
If Cn = Qn,

a® = q,(0) exp(-¢ 1) + [4,(0) + £, (0)]7 exp(-t,7) + Q (T)*T exp(-L 7).
(54b)

Case III

2 2
HE2 > ak,

qglo) = q,(0) exp(-£,T) cosh ( C;- Q‘;'l T> +

- exp(-{py7) sinh ( C;' Q;T> +—'l_ Qn(T)*exp(-CnT) sinh( C;'Q;T>

(54c)
In the above equations,
i
Q(T)*p(T) = f @ (b (T il (54d)
0
By substituting the results into first-order equations, we obtain the solu-
tions for the next order in similar manner.
VI. PARAMETRIC RESPONSE
In this section, the problem considered is the dynamic stability of
the tube under pulsating flow. The velocity varies with time and is repre-

sented in the form

u(T) = wy[l+ pcos (w7)], (55)
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where uy and u are constants. The fluctuation of flow velocity can result
from a pumping operation or the unsteady component in a two-phase flow.

The equation of motion takes the form

dtw w 5 6L o2
St + OLE + ud[l+u cos (wT)] 8—g+ 2Ruo[1 + p cos (wT)] aggo‘r
2
- Buouw sin (wT) g—;’ + é% - aa’r‘:' =(0), (56)

The solution of Eq. 56 is sought in the form of Eqs. 29 and 3la. Applying
Galerkin's method, we determine a system of ordinary differential equations
for the unknown functions of the time coordinates qn(’r):
4, +2&,v.q, +e[l+pu cos (a)T)]Zanjqj - €,w sin (wT) Zanjqj

J J

+ vf,l{l -[1+u cos (wv’)]zr;}qn = Qu (57)
where
A
€= Zﬁuo,
ok g
Vn = nT,
7 1
N ot Zvné’
u, > (58)
e S
n un
€, = Bugl,
1
o = f Q¢, dt,
0

=

and the other notations have been defined before. Since only the stability
problem is discussed here, Q, is taken as zero, or more precisely, there
is no external force and no initial curvature. Thus, Eqs. 57 may be written

1. 2 2 2 . *nj,
Sed, [1 - pyTy - P, Ty cos (WT) - p ry cos (ZwT)] qn - €0 sin (@T) z 2 9
e ok

zcn' +€[l+ i cos (mT)]Zm’ =0 (59)
i an = : T
J
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where
pr = 1+ 3%
=201,
and
o i

The equations may be further condensed into one vector equation:

f/[é'+ [EI- Plg—pz cos (w‘r)g - P; cos (ZwT)B] q - €, sin (wT)Ag

i;, =,
+2€e[l+ucos (wT)] Aq + 2Dg = O, (61)

where M, E, B, and D are diagonal matrices with the elements Mnj’ Enj'
Bnj: and Dpj» respectively; and

-~

1

Mp: = = Onis
y )
vl’l
Enj = 6nj' L
=2 62
an = rnénj. ( )

and

1
Pnj =3 Calnj

7

Matrix A is antisymmetric and is the coupling term resulting from the
Coriolis force; its element Anj is

(63)

Equations 61 are the coupled differential equations of the Mathieu-Hill type
with multiharmonic coefficients. A brief outline of the general theory of
stability of these equations is given here; it is patterned closely after the
discussion by Bolotin.?

The solution of this system, which corresponds to the boundaries
of the instability region and has a period of 2P (P = 27m/w), is sought in
the form



L2 > kot - kwT
= (ak sin — + by cos > > (64)
k=1,3;5;5...

On substituting Eq. 64 into Eq. 61, multiplying out all trigonometric func-
tions, and equating to zero the coefficients of sin ka)T/Z and cos ka)T/Z
with the same index k, we obtam the following infinite system of algebraic
equations for the coefficients a.k and bk

1S

=_5 = = = lo = U)Z= =
73Ba5 - X(p, - ;) B3y + (E- ,OIB+—21B-TM> a1

- a)(eA+D) b; + Zeuw.z:x = 0;

mln-

S = = = 2 =
HEWAa; + w(epA+D) a; (E plB- P2B - %M) b,
- 3Pz +p5) Egs - 3P3Bbs = 0;

= = = = 9 =\ - - ——
-3p3Ba; - 1p,Ba, + (E P B -Z&M) a; - 3(P; - P3) 2y - LEWAD,;

ko =46,0 0500 ~

Equations 65 are equivalent to the ordinary differential Eqs. 61; they may
be condensed in matrix form as follows:

29
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""EZZEZIfZIfZZ"" as
v ew By By EppBp =t=a = 8y
PRI L = (66)
- = - - Gz Gy Hyy Hip - - - - [[lliP1
- - - -Gy Gy Hay Hpp - - - - || b3
where
-
= = = /OZ: (L)z=
E“:E—PIB'*'?B-‘L—M;
Fj; = -€wA - oD,
Gy = -€wA + oD, > (67)
2
= = = e =
Hy = E- (p+3P2) B - i

J

The boundary equation of the 1nstab111ty regions is obtained by setting the
determinant of the coefficient of ap and bk equal to zero; i.e.,

- - - -GGy Hy Hyp - - - -

The determinant is infinite. Bolotin shows that this infinite determinant
belongs to the class of normal determinant implying absolute convergence.
In view of this property, the boundary of the principal region of instability
may be located approximately by equating to zero the following determinant:



E11 f‘ll
(69)

Gll I?Ill

The principal region of instabilityis expressed in the form (see Appendix B)
w
/XZ = 271 = w/ K ts (70)

where X; and X, depend on the parameters £, u, and M. If the damping is
not taken into account, the solution of Eqs. 69 gives the following approxi-
mate formulas for the boundaries:

&=

X1 = 1 - (1-p+3u?) rl
256
=g Bffl-(1-p+3?) 1]

vE[1- (1 +pu+308) rf] - vi[1- (1- p+32) 2]

and L (71)
Xz = 1 - (L+p+3pP) o}
256
=5 P~ (1+p+3p) )
vE[L- (1-p+3p®) 3] - vi1- (L hp+3p®) 2]
.
If the index k in Eqgs. 64 is evaluated, 0, 2, 4, ..., the function <_f

will be the solution corresponding to the boundaries of the instability having
period P, and the calculations are carried out in the same manner as
before. The solutions obtained determine the boundaries of the second in-
stability region, which is expressed by

V& === S

Here, 7, and T, also depend on the same parameters. Without considering
the damping, the approximate formulas determining the boundaries of the
second instability region are:

g ="1 - (1+%#2) r%

256 (73)
5 Bfe?[1- (1+37) =201 - (1442 ri] Cathi,

[1-(1+31%) r;][v: - (1+32) £+l 2l ) s -] - szr;‘vg

Sill
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and
3 2r4
Ty o= 1= (143u2) 1} - —= Il
1- (14317 r1 Contd.

Z—Zf’ﬁzuz{[l - (L+3p%) i - (1 +2p2) £f] - 2pri}
1 .
[1-(1+z4%) 105 - (1 +542) r3v8 + (1+40) rhd - 3] - 2t J

Results of calculations using these formulas and several sets of
parameters are shown in Figs. 7 and 8. If a point occurs in the noncross-
hatched region, the initial straight form of the tube is dynamically stable.

< ry, 02
IJW -y _
1.6 —

0.6
L= =
3
=
-
2
o
g
5
B |
g
&
w
s
°
=
=
=
1.0 |—
0.2
==z = 0.1
0.8
W 0.6
0.6 |—
S| ST | | |

0 0.1 0.2 0.3 0.4
EXCITATION. PARAMETER (1)

Fig. 7. Stability Diagram for B = 0.2.
ANL Neg. No. 113-3631 Rev. 1.
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2.0 . . .
T T T T However, if it occurs in the

crosshatched region, the tube

will be dynamically unstable,
= 0.4 — and anyinitial deviation from
the straight form willincrease

without bound.

A few conclusions
can be drawn from the
results:

=

1. The second in-
stability region is much
narrower than the principal
region.

RATIO OF FREQUENCIES (w/v,)
s

2. The width of the
instability regions depends
on the velocity component.
As r, increases, the para-
0.8 L] metric resonance frequency

NM decreases and the width of

the instability region

increases.

T
1

0.6 f— —
3. The effect of the
Coriolis force is to lower
0.4 I I L l slightly the instability

0 0.1 0.2 0.3 0.4 » .
region.
EXCITATION PARAMETER (p)

Fig. 8. Stability Diagram for 8 = 0.8. 4. The instabilities
ANL Neg. No. 113-3630 Rev. 1. at constant flow velocity

need not concern reactor
designers, because they occur at high transport velocities that are not
likely to occur in reactor channels; however, parametric resonance can
occur at lower flow velocities.

Because of the importance of the nonlinear effects, the linear
theory is unable to predict the amplitude of oscillation under unstable con-
ditions. Therefore, nonlinear theory should be used in determining the
amplitude response in the instability regions. However, from a practical
point of view, the important consideration is to avoid the onset of insta-
bility; this can be achieved on the basis of linear theory. As long as the
system properties are known, the instability can be checked, using the
method and results presented here.
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VII. SIGNIFICANCE OF THE CORIOLIS FORCE

The existence of a Coriolis force in the system gives rise to a phase
difference and mode coupling. Due to the presence of the Coriolis-force
term in the equation of motion, the analytical solution is much more com-
plicated. Its significance is further investigated here with a view toward
assessing the importance of including the Coriolis-force term.

It has been shown in Section V that by employing Galerkin's method
and using the mode- shape functions obtained for a zero Coriolis force, the
equation of motion is reduced to Eqs. 43, which can be written as one vector

equation:
G +2Dg +eAq+ 03 = Q, (74)

where the matrices D, A, and {} represent the coefficients in Eq. 43. The
third term on the left-hand side arises from the Coriolis force. As shown

in Eq. 35, the matrix A is skew-symmetric. Although the matrix A appears
as an energy-dissipation mechanism, we will show that the total work of the
forces corresponding to the matrix of the displacements is equal to zero.

The virtual work of a generalized force F, on displacement q is

dw = ;Fndqn = ;Fnt‘ln dr. (75)

Fp = -eZanjqj (76)
is substituted into Eq. 75,

aw = ‘€§Jzanj‘inqj dr. (77a)
Using the result given by Eq. 35, one obtains

dWw = 0. (77b)

Thus the Coriolis force does not dissipate or supply any energy; i.e., it is
n.ot a resistant force or an energy source. This implies that during vibra-
tion the energy transfer between fluid and tube due to the Coriolis force is
zero at any instant.

The skew- symmetry of the matrix A is associated with the boundary
conditions. Recalling Eq. 34, we know that as long as there is no displace-
ment at the ends, the matrix is skew- symmetric and the Coriolis force will
not contribute damping to the system. Consequently, the natural frequencies
obtained from Eq. 39 are always real and positive in the subcritical region
when the fluid transport velocity is less than its critical value. Further-
more, the tube and fluid comprise a conservative system; therefore, the
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Coriolis force does not affect the instability. However, if there is an un-
supported end, such as the cantilever tube discussed by Gregory and
Paidoussis,® the natural frequencies in the subcritical region are com-
plex, and the Coriolis force may have a destabilizing effect on the system.

From Eq. 36, it follows that

apj = 0 formn,j = evenor n,j = odd. (78)
This relationship implies that there is no coupling between even modes or
odd modes. Physically, this means that the motion in odd modes will ex-
cite the motion in even modes only, and vice versa. This is most easily
understood from the fundamental mode. The displacement is a symmetric
arc between the two supports, but the angular velocities of the left half
span are opposite to those of the right half span; i.e., the Coriolis forceis
antisymmetric; therefore, only the antisymmetric modes will be excited.
The motion of these modes will produce a symmetric Coriolis force which,
in turn, will induce symmetric motion. This is the reason why the Coriolis
force causes mode coupling and phase difference.

As pointed out in Sections IV and VI, the influence of the Coriolis
force on free vibration and parametric response is small for a transport
velocity that is small relative to the critical value. To observe the effect
on forced motion, we analyzed the transient response of a simply supported
tube subjected to a uniformly distributed step-function loading. With the
method suggested in Section V, the
displacements at a quarter point
- are shown in Fig. 9 for B = 0.8
and @ = 0.5. Here, the dotted line
4 is the solution neglecting the
| Coriolis force term (zero-order
perturbation solution); the solid line
is for the case including the Coriolis
force (first-order perturbation
solution). It is clear that the effect
of the Coriolis force on the tran-
sient response is negligible.

08
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DIMENSIONLESS DISPLACEMENT (7 4w/Q)

— From an energy consider-

{ ation, free vibration, forced motion,
| and parametric response, we may
conclude that neglecting the Coriolis
force in the study of the transverse
vibration of a supported tube will
not cause a large discrepancy over

04—

02—

] B e
(5 | 2 3

.%#
&

DIMENSIONLESS TIME (72t)

Fig. 9. Transient Response Curves for the Tube Dis-
placements due to Step~function Excitation.
ANL Neg. No. 113-3635 Rev, 1.

the range of fluid transport veloci-
ties important in practical reactor
design.
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VIII. INFLUENCE OF INITIAL CURVATURE

A. Steady Flow

If a tube containing static fluid is subjected to the action of a lateral
load, a small initial curvature of the tube has no effect on the bending
stress. However, if the fluid is dynamic, the deflection and bending stress
will be substantially influenced by initial curvature.

Consider the static case. The initial shape of the axis of the tube is

given by a series
W = an sin (nTE), (79)
n

where f, is Fourier-expansion coefficient. The tube conveying steady flow
is subjected to the action of a longitudinal compressive force u?
(dimensionless). An additional deflection w; will be produced so that the
final deflection is

w = W) + wg. (80)

The static deflection w; is determined from Eq. 9 by dropping the time-
dependent terms (further assuming Q = I' = 0); this yields

4 2 2
g o A W o S (81)

a¢* 3¢’ >¢

the solution of which is

wy = ;gn sin (nm€), (82)
where
ks im
st (83)

and ry, is the ratio of transport velocity to its critical value. The total
deflection is

fh
w =Zl T sin (nm§). (84)
n n

It is easily seen from Eq. 84 that the initial deflection corresponding to the
nth mode is magnified in the ratio 1/(1 2 r;) As the transport velocity
reaches its critical value, the deflection becomes infinite and buckling
occurs; this is consistent with the result obtained from the dynamic analysis.



The dynamic effect of initial curvature under steady-flow conditions
can be determined from Eq. 9 or Eqs. 43 and 44. The force induced by the
initial curvature is time-independent; therefore its effect on the dynamic re-
sponse of the tube is exactly the same as that of a distributed load of mag-
nitude u® Bzwo/ae ) acting on the tube.

B. Pulsating Flow

To understand the influence of the initial curvature on a tube con-
veying pulsating flow, the following problem was analyzed:

A simply supported tube with an initial imperfection given by Eq. 79
conveys unsteady flow described in Eq. 55. It is assumed that the tube is
free from external excitation and axial force. The problem is to determine
the deflection of the tube. The basic differential equations have been for-
mulated in Section VI, and are given by Eqs. 56-58 with the Coriolis force
included. It has been shown that the effect of the Coriolis force is small
when the transport velocity is small. As a preliminary study, the coupling
effect due to the Coriolis force is neglected. If the initial imperfection wq
is substituted into Eq. 58, then Eq. 57 reduces to

G o0 Ple P I plr;— ,Ozri1 cos (wT) - psr3 cos (2wT)] q, =

V2 [porrd + a1l cos (WT) +psry cos (2wT)] £y, (85)

Near the second-order resonance, the steady-state solution of the
form

q, = ap sin (@T) + by, cos (®T) + ¢, ¥ (86)

is assumed. The values for a,, by, and c, are determined by substituting
Eq. 86 into Eq. 85, neglecting higher harmonics, equating coefficients of
like functions, and solving the resulting equations. These operations yield

4Cnﬂrn< ) n/An’

w 2
5 ZIU-rnl:l z r;(l+%pz) = <‘U_):| fn/An’
n,

&1

o'
=]
!

and

0
=]
1
i =
ITI
1
..,
’.:
-
PN
“;:
TR
€|8
R
et Dy
~n
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where

w1
A, = [1-(1 +3u?) 2] {[l- (0 +302) - (—;;):I
. 4c;($)z} - 2l [1 -1+ h) - (—‘”—ﬂ . (88)

The total steady-state amplitude is
w = 0 [fn+cntap sin (@T)+by cos (wT)] sin (nmé). (89)
n

A numerical result is given for the curved tube whose unstressed deflection
is assumed to be represented by one-half of a sine wave; i.e.,

S = ey ke () (90)
The steady-state solution is

w = [f;+c,+a, sin (wT)+b; cos (wT)] sin (7€), (91)
and the maximum steady- state amplitude is assumed to be

Wmax ~ (fl +c;+ vai+bi ) sin (7€). (92)

The magnification factor is defined by

w
M.F. = —=2% 1+—1(c1+ a§+b§). (93)
Wo £

The response curves are shown in Fig. 10. The amplitudes depend on the
ratio of the frequencies and the parameters r;, (U, and ;. It is apparent
that the initial imperfection is greatly magnified near the instability re-
gions. Thus the curvature of the tube can produce large deflection under
pulsating flow, especially when the fluid transport velocity is large.

The approximate solution obtained in this manner is valid near the
second instability region. This is to demonstrate the effect of initial cur-
vature under unsteady flow. If one is interested in the exact response
problem, it is more realistic to use nonlinear theory,s which is not dis-
cussed here.
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Fig. 10

Response Curves for Tube Displace-
ments withp = 0.2,;1 = 0.01. ANL
Neg. No. 113-3634 Rev. 1.
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IX. SUMMARY AND CONCLUSIONS

The mathematical-model formulation in this report is appropriate
for transverse-vibration studies of a tube conveying fluid with a relatively
small transport velocity compared with its ‘critical value. The effects of
initial curvature, axial forces, viscous damping, and unsteady flow are in-
cluded in the equation of motion. The peculiar feature is the presence of
the mixed-derivative term. Mathematically, this term makes the boundary-
value problems not self-adjoint and induces the coupling coefficients. Physi-
cally, it is of a Coriolis force origin. Due to its effect, the system does not
possess the classical normal modes. Instead, the tube is characterized by
phase difference and mode coupling. The mixed-derivative term also gives
rise to two different phase velocities in the infinite media. Thus the propa-
gations of initial disturbances and impressed force waves are quite different
from those in fixed media. Although the mixed-derivative term produces a
number of distinguishing features, it may be neglected without causing a
large discrepancy for the case in which the transport velocity is small with
respect to its critical value.

By employing the mode-shape functions obtained for zero Coriolis
force, Galerkin's method is an efficient approach. The free vibration is re-
duced to an algebraic characteristic equation, which is readily solved and
yields sufficiently accurate results. The forced vibration is transformed to
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a system of coupled ordinary equations, which may be solved by conven-
tional methods; when the transport velocity is small, perturbation can be

used.

The fluid transport velocity has a tendency to reduce the natural
frequencies; this is attributed to the fluid centrifugal force and the Coriolis
force. The effect of the former is more significant than that of the latter.
In the subcritical region, the natural frequencies are always real positive
for the tube without displacement at two ends. This is because the Coriolis
force in this case does not dissipate energy. But if there is displacement
at either end, the frequencies will be complex and the Coriolis force will
damp the system.

The existence of unstable oscillations of the tube under unsteady
flow has been established, and the boundary equations of the first two in-
stability regions have been obtained in closed form for the case of zero
damping. Since the instability due to the excitation of pulsating flow can
occur at relatively low transport velocities, it seems to be a problem of
importance.

The initial tube crookedness yields a nonhomogeneous term for the
equation. In the steady flow, the initial deflection corresponding to its
nth mode of buckling is magnified in the ratio of l/(l - r%). But for the
pulsating flow, the magnification factor becomes very large for certain
frequency ratios. Initial curvature may induce large deflections if the
transport velocity is large; it has no beneficial effect upon the vibrations
and stability.



APPENDIX A

Solution of the Nonhomogeneous Wave Equation

When the flexural rigidity is neglected, the equation of motion is
given by Eq. 12, which is repeated for convenience:

%y %y %y
Zne 2y = 282U = 1
(B*0%-¥7) S + 28 3o T3z - Rixt) (A.1)

We see that the equations of the characteristics are
dx - v, dt = 0

and (A.2)
dx + v, dt = 0,

where
) = [92- pu1-p9]Y7 4+

and (A.3)
v = [v - poi(n- 1" - pu.

The sign of the quantity ¥ - B2U%(1 - p%) determines whether Eq. A.l is

hyperbolic or elliptic. For small velocities U, the equation is hyperbolic;
for sufficiently high velocities, it is elliptic. For the particular velocity

el (A.4)
pV1-p?
it becomes parabolic.
In the following analysis, we consider the case in which
U z
pV1-p?
Assuming that the initial conditions are prescribed by
y = glx) att =0,
and ((A%5)
dy
— = h(x) att = 0,
ot

we are interested in the solution of Eq. A.1 that satisfies Eqs. A.5.
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To solve this problem, we introduce the transform

Y1) = yabe ) + valx, ), (s
such that
zz—za_zﬁ Z_B.ZY_’ _aiyl:o (A.7)
(ﬁU'V)aXz +2 8x8t+ Jt2
for
yi=gle) att=0,
and (A.8)
%:h(x) g o=
and
(BZUZ-_Z) a;jz B % %? = R(x,t) (A.9)
for
yp = 0 ciie = ()
and (A.10)
aa-% = (0 atete— 0.
The solution of Eqs. A.7 and A.8 is of the form
yv1 = G(x-7;t) + H(x +7,t). (A.11)
We find immediately that
G(x) + H(x) = g(x) (A.12a)

and

s . (A.12Db)



Integration of Eq. A.12b gives
X
-T,G(x) + VoH(x) = /" h(s) ds + C,
0

where C is a constant. From Eqs. A.12a and A.13, we find

G(x) = ‘—/1—1-%7/2 _vzg(x) - fox h(s) ds - C_
and r
H(x) = % —vlg(x) + fx h(x) dx + C- .
Ve vios | 0 J J

Substitution of the values found for G and H in Eq. A.ll yields

1 o +V,t
y1 = —— | Vig(x + V,5t) + Vog(x -¥it) + /-x h(s) ds|,

v + vz -t
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(A.13)

(A.14)

(A.15)

which is D' Alembert's formula for the solution of the initial-value problem

for the wave equation.

To solve Eq. A.9 with initial conditions A.10, we introduce the new

independent variables £€; and £, by means of the substitution
€1 = x-Vit

and »
€, = x + Vt.

Equation A.9 then reduces to

o2,
JE10E2

= _ﬁ(glx gz),

where

R(E,, E;) = 1 R[Vlez i vzg1, B f :|

(71 +7,)? s 2(vy +¥2)

(A.16)

(A.17)

(A.18)

The transform takes the upper half of the (x,t)-plane, t > 0, into the part

€, = £, of the (€, €,)-plane. The initial conditions for y,(x,t) att =
to the initial conditions

=0, —
72 3, o6,

0, lead
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on the line €, = £, in the (€,, £;)-plane. Our problem is now to determine
y, from these initial values in the half-plane £, - €; > 0. This is done by
integrating Eq. A.17 twice, first with respect to £; and then with respect
to £,, starting both times at the point on the line £; = £,. The result is

/61 jel R(E), &) &} at). (A.19)

Equation A.19 can be easily transformed by reintroducing x and t
as independent variables. From Eq. A.l6, it is seen that

d€, dé, = (¥, +¥,) dx dt;

therefore, we obtain a solution of the problem in terms of the variables
xeand t:

X4V, (t-7)
(

l t
V2 =#/ de R(s,T) ds. (A.20)
Vit Vay, x-V(t-7)

Finally, the sum of Egs. A.15 and A.20 gives the solution of Hg. AT

] X+VZt
——— +9,t) + ¥ -v
y S Vig(x +V3t) + Vog(x - ¥4t) +/;<-71t h(s) ds
t x+V,(t-7)
+/ dT/ R(s, 7) d{’. (As2)
0 x-v,(t-7)

When U = 0, Eq. A.21 reduces to classical solution of the wave equation.!®



APPENDIX B

Equations Determining Stability-Instability Boundaries

This appendix lists the equations that determine the values of X,
X, Ty, and T,

Taking two-mode approximation, the expansion of Eq. 69 gives
laigl =0, 415 =1, 2, 3, 4, (B.1)

where

1 wi \#
o 1-(1-,u+7pz)rf-< >

2V,
az = 0,
w
(o e e
13 & 7
8 W
ay = 3Bu—,
v
1
oy =0

2
1 w
ap = 1 - (1'/-1+7Hz) r§ = (2_.,,2>

8 w
e S S
2
w »
Q24 'rsz
w ; (B.2)
Diay = ClV_l'
8 w
T S el e
3

Qe = 0

gy A—:Bu %
Kz

g2 = Cz,%

a4 =0

and

2
1 2 w
Qs = L= (1 +u+5 p2) 5 - (Z_Vz) .
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For a given system, the only unknown in Eq. B.1 is the frequencyw. From

2
; w
this equation, we can determine the values of (E) and denote them by
1

X, and X;. Thus the principal instability region is specified by

X, = — = VX (B.3)

dh
2y

Similarly, the equation to determine boundaries of the second in-
stability region can be shown as

B35l =0, 1,5=1,2,3,4,5,6, (B.4)
where
2
B = 1- (14543 - (%) ; Ba =—;#ﬁ“%'
2
Bz = 0 [Be = 0
B3 =0 Bav=40
P = S ubu s Bu = 1= (1434 13,
1
i) Bis =0
Bis = ZCIVI &>
B. = -/.u'z,
Bis = ?ﬁu % . 2
L w
= 28, —
N Bs1 & =
B2z = 1‘(“‘%#2) r%-(%) Bsz = '13_6‘3“1,?
Bsy = -2ur},
B = -5 uPu — 2 (]
: sy = 0 9 (B.5)
By = 0
Bp = - g, L ‘5“”'(“%#2)&‘(_)
z50=-i=—PFu o2
2 Bsg = 0
Bz = 20, —
zy’ Bear = %ﬁu%
B =0 :
¥ Bez = 2L, =
Bz = -5 upu 1%, 2
y Bt =20
B =1 - (l+%“2) ré, Bes = ~2urs,
Bu = 0, Bes = 0, and
- 2
Bis pri, Bes = 1- (1+32) £ - (yﬁ)z
B = 0, & J




z . eqe
We assign 7, and 7, for <—‘°> , which satisfy Eq. B.5. The second instability
Lo

region is given by

I == e (B.6)

i1
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